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HYDRODYNAMICS OF A STF~TIFIED LIQUID IN THE TErmINOLOGY OF THE LAMB MOMENTUM DENSITY 

G. A. Kuz'min UDC 532+533 

The wave motion of a stratified fluid is not separated from the vortex component in the 
Navier--Stokes equations. This makes the analysis of motion difficult in the nonlinear case 
when the wave and vortex components can reciprocally generate each other. Consequently, a 
description of the nonlinear dynamics of a stratified fluid in the terminology of the velocity 
or vorticity fields is not optimal and selection of other variables, whose evolution in time 
would be mutually less dependent, is desirable. 

As is shown in [i, 2], a particular class of ideal stratified media motions exists which 
conserve their form under arbitrary levels of nonlinearity. In an incompressible fluid these 
are the motions whose velocity field can be expressed in terms of the density p and scalar 
functions %, ~ by the formula [2] 

pv = - v ~ +  ~vp. (1 )  

In the terminology of the functions introduced, the fluid dynamics turns out to be Hamiltonian 
while %, p are canonically conjugate variables. The wave motions that are described by such 
variables possess vorticity. However, the class of motions (i) is constrained, and they can 
be considered analogs of potential motions of a homogeneous fluid [2]. 

In this paper, a representation is obtained for the velocity field of an incompressible 
fluid, which generalizes (I) and yields a partition of the total motion into separate compo- 
nents. This representation results in a natural manner from the equations of motion if they 
are first written in the terminology Of a new variable, the Lamh momentum density. The equa- 
tions obtained are converted to Hamiltonian form. They can be used to search for the Lagrange 
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and integral invariants by using a procedure analogous to that proposed in [3, 4] for the 
homogeneous fluid case. 

LAMB MOMENTUM DENSITY OF AN INH~OGENEOUS FLUID 

The dynamics of an ideal inhomogeneous fluid is described by the Euler equations 

d(pv)/dt = --VP --  Pg; (2) 

div v = O,,dp/dt = 0,, (3) 

where d/dt = 3/3t + (vV), and g is the acceleration of the gravity force in the field. The 
remaining notation is standard. We make a change of variables in (2) and (3). Instead of 
the velocity v and pressure p we introduce the fields q, ~ by means of the formula 

pv = - - V ~  + q. ( 4 )  

The vector relation (4) must be supplemented by a scalar relationship which is selected in 
such a manner that the pressure gradient is eliminated from the equation of motion (see (8) 
below). If the fields q, p are given, then by using the incompressibility condition 

div v = div [(--V~ + q)/P] = 0 (5) 

the variable ~ can be found, and when known v can be found from (4). Therefore, the dynamics 
of the fluid is described completely by the fields q, p. The field q plays the part of the 
Lamb momentum density. 

As is known [5, 6], the fluid motion can be characterized by the magnitude of the Lamb 
momentum, the total momentum of the force which is required to generate motion from the 
state of rest. Let us examine the motion that occurs in an inhomogeneous fluid under the 
action of a pulse external force 

(6) 

where 6(t) is the Dirac function, and q(x) is the momentum density which is transmitted in- 
stantly to the fluid. Its modulus is considered a bounded function of the coordinates. Let 
us add the force determined by (6) into the right side of (2) and let us integrate over a 
small time interval (--c, ~). Since the velocities of the motions that occur are finite, 
in the limit s § 0 the convective term in (2) and the term with the gravity force field 
yield no contribution. In general, the pressure in an incompressible fluid subjected to the 
action of a pulse load will contain a contributionproportionalto~(t). Consequently, the re- 
sult of the integration is written in the form (4), where ~ =lim ~p(t) dt. The ordinary momen- 

tum density is a particular case of the Lamb momentum density: q(x) can always be selected 
in such a way that pv = q. In this case ~ = 0. In contrast to q the velocity v should 
satisfy the additional condition of being solenoidal. Consequently, this field v can be gen- 
erated by many q distributions. All such distributions are distinguished by the gradient of 
the scalar function that is determined by the scalar calibration condition and is selected 
from considerations of convenience. 

Let us deduce the dynamical equation for q. Substitution of (4) into (2) yields 

dqi . avj 0 [ " d~ t ] ( t ) 0p - - p  pgx pv 2 - H ( p )  + g x +  dg dt ql"~x i + ~ +'-~ + ~ d-"p--~ v2 Oxi" (7) 

A n a l o g o u s l y  to  [ 2 ] ,  t he  d e n s i t y  f u n c t i o n  H(~) i s  i n t r o d u c e d  h e r e ,  which i s  s t i l l  c o n s i d e r e d  
arbitrary. As the calibration condition we select an equation analogous to the Cauchy--La- 

grange integral 

d~/dt = p + pgx --pv2/2 + H(p). (8 )  

Equation (7) acquires the form 

dqJdt = --qjOvflOxi + (gx + dH/dp ~ #/2)Op/Oxi, (9) 

which completely governs the dynamics of an ideal inhomogeneous fluid. The fields ~, v. are 
expressed in terms of q from (4) and (5). Thepressure is found from the calibration condi- 
tion (8). 

Let us examine certain properties of the field q and the equations obtained in the sim- 
plest case of a homogeneous fluid p = const. In this case, the nonessential constant ~ and 
the term with the gravity force field can be neglected in (8), while the term with the gradi- 

ent of p drops out in (9): 
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dqjdt = -qjav/axi. (i0) 

it follows from (4) that in the domain where q = 0 the flow is potentiallyv= --V9/9. In gen- 
eral, the converse is not true. Let the potential motion domain being considered be simply 
connected (slits are assumed drawn in the case of a multiconnected domain). Substituting 
v = --V~/O into the Euler equation, we obtain the 0auchy--Lagrange integral 3}/3t -- pv=/2 -- 
p = const, or 

d ~ / d t  = p --pv~/2 ~ const. (ii) 

If the nonessential constant is omitted in the right side of (ii), then (d/dt)(r -- 9) = 0. 
It is easy to confirm that if q = q~ is a solution of (i0), then q~ + VI, where I will also 
be a solution of (i0), where I is an arbitrary function satisfying dI/dt = 0. If we select 
I = } -- 9, then the new field turns out to equal zero outside the slits and the flow domains 
with vorticity. It hence follows that a finite vorticity distribution can be substituted 
in conformity with the finite distribution q(x). 

According to (4), in the case O = const the field q is the sum of the solenoidal pv and 
gradient V9 components. The solenoidal and gradient components of any vector field can be 
extracted by using projection operators. For instance, their explicit form is known in the 
case of an unbounded domain with fields that decrease sufficiently rapidly at infinity [6]: 

09/Ox~ = ~ U~ (x, x') qj (x') dV (x'),: 

vi (x) = S QiJ ~ '  x') qj (x') dV ( x ' ) .  (12) 

4~axiaxjlx-- x' l '  Qij = 8 ~ j 6 ( x - - x ' ) - - H ~ .  

In a bounded domain, the Green's function of the boundary value problem for the Poisson equa- 
tion should be used in place of i/Ix-- x' I. 

Now, let the fluidbeinhomogeneous, p # const. We consider the evolution of the field 
= q • Vp. A direct calculation utilizing (9) dp/dt = 0 shows that 6 satisfies the equation 

d~/dt = (~V)V~ (13)  

which is analogous to the equation for the vorticity in a homogeneous fluid. It follows from 
the form of (13) that ~ belongs to the class of frozen fields whose force lines move together 
with the fluid. If ~ = 0 at the initial time, then it equals zero also in all succeeding 
times. In this case q is parallel to Vp: 

q = ~VP~ pv = - - V g + ~ V 9 ,  ( t 4 )  

where X is a certain scalar function. Substitution of (14) into (9) yields a dynamic equation " 
for X 

d~/dt : - - v 2 / Z ~ d H / d g + g . x .  (15)  

The r e p r e s e n t a t i o n  (14)  i s  i n  a g r e e m e n t  w i t h  (1)  and ,  i n  p a r t i c u l a r ,  d e s c r i b e s  an i n t e r n a l  
wave. The function H(p) can be determined from the condition that the hydrostatic equilib- 
rium be described by trivial solutions of the motion equation [2]. 

In the general case, we set 

�9 q = ~V9 + q', 9v = - - V 9  + LVP + q' ( 1 6 )  

in place of (14), where ~ satisfies (15). Substituting (16) into (9) we obtain 

dq~/dt = - -  q~Ovj/Ox~, (17) 

that is, q '  satisfies the same equation as q in a homogeneous fluid. The representation 
(16) yields a convenient partition of the total Lamb momentum density into two components. 
The first can be utilized to describe internal waves, and the other, all other fluid motions. 

LAGRANGE INVARIANTS 

Let us examine fields of three kinds. The first will be "Lagrange invariants," the 
scalar functions I(1)(x, t), I = i, 2, ... that are invariant along Lagrange trajectories 

df /d t  = O. (18)  
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Another kind is the vector "frozen fields" J(m)(x, t), m = I, 2, ... that satisfy the equa- 
tion 

dJJdt  = JjOvd'Oxj. (19) 

Equation (19) shows that the field J evolves along Lagrange trajectories analogously to the 
vector dl, connecting two infinitely close material points [6]. The vorticity ~ = rot v in 
a homogeneous fluid and the field ~ in an inhomogeneous fluid (see (13)) satisfy (19). To- 

e (n) gether with I and J, we consider th fields S L (x, t), n = i, 2, ... that evolve along La- 
grange trajectories similarly to differential oriented area elements [6]: 

dSi/dt = --SjOvj/Oxi. (20) 

The field q for a homogeneous fluid and the field q' for an inhomogeneous fluid are an ex- 
ample of the fields S. 

It is shown in ~3] how new fields are constructed from known Lagrangian invariants and 
frozen fields. Thus, the field IVI' x VI" is a frozen field and the scalar function (JV)I 
is a new Lagrangian invariant. The Jacobian of the three fields D(I(1), I(=), l(3))/D(x~, 
x2, x3) will also be a Lagrangian invariant. Successively applying these relationships and 
considering linear combinations of the fields, we can obtain new Lagrangian invariants and 
new frozen fields. 

Equation (20) can be utilized to search for additional Lagrange invariants, and the 
scheme of their search becomes more symmetrical. By virtue of the quasilinearity of (18)- 
(20), linear combinations of the fields of each species belong to the same class. Direct 
calculations show that the fields I, J, S possess the following properties. The gradient 
of the function I satisfies (20). The curl of the field S is a frozen field, while the di- 
vergence of any frozen field is a Lagrange invariant. For instance, div ~ = pe, where e = 
Vp'~ is the Ertel Lagrange invariant [7], 

It can also be shown that the fields J, S possess the following reciprocity properties. 
The vector product S x S' is a frozen field while the vector product of the two frozen fields 
J x J' satisfies (20). The scalar product J'S is a Lagrange invariant. Using all these 

relationships, new fields can be constructed from known fields of the type I, J, S. 

Let us consider simple examples. The vector dl connecting two infinitely nearby material 
points satisfies (19) while the field q' satisfies (20). Hence, their scalar product q.dl is 
a Lagrange invariant. The integral of q' along an arbitrary material contour (not certainly 
closed) is also conserved in time. The field q''curl q' is naturally called the spirality of 
the field q'. According to the exposition above, curl q' is a frozen field while q'.curl q' 
is a Lagrange invariant. Therefore, in contrast to the spirality of the velocity field v" 
curl v, which is conserved integrally [8], the spirality of the field q' is conserved locally, 
along the Lagrange trajectories. 

At the initial time let q'.curl q' = 0. Then the spirality of the field q' equals zero 
even insubsequent times. As is known [8, 9], the spirality of the field equals zero in any 
case if this field is representable in the form.L Putting q' =xV~ in (16), we obtain the 

relationship 

pV : - -V~  -F ~VP -F %V~. 21) 

As is noted in [i0], the equality (21) can be considered a generalization of the representa- 
tion (i) and the Clebsch representation (in the particular case of Vp = 0, (21) agrees with 
the Clehsch representation [5, ii]). Any Lagrange invariant, the Ertel invariant e, say [12], 
can be selected as the potential ~. Substituting q' = xVe into (17), we obtain that X should 
also he a Lagrange invariant. The dynamics of the fluid is described in terms of five func- 
tions while the total system of equations consists of (5), (15) and three equations 

dp/dt = de/dt = d~dt  = O. (22) 

The boundedness of the Clebsch representation and its generalization (21) is clear from 
the exposition above: They describe just flows with spirality of the field q', which equals 
zero everywhere. A more general class of flows can he described at the cost of introducing 
multivalued Glebsch potentials [13] while remaining within the framework of the representa- 

tion (21). 

HAMILTONIAN FORM OF THE MOTION EQUATIONS 

The total energy of a stratified fluid is written in the form 
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H = S [PV2/2 + U (p, x)] dV, (23) 

where U is the potential energy density. Since the potential energy is determined to the 
accuracy of a constant, then an arbitrary function of the Lagrange invariants of motion can 

be included in U, for instance, the density function ~(p) that was in (7)-(9), (15): 

U ~ pgx + n(p) --1-I(po)., 

where po(x) is the equilibrium density. The evolution equations for the generalized Clebsch 
potentials (15) and (22) can be written in the canonical Hamilton form if (23) is selected 
as the Hamiltonian (see [2, i0]): 

o~ 6H op as  oz 8~r o, 6~r 
---- (24) 0t 6p ' 0t 6~' Ot 6~' Ot 6Z 

The Hamiltonian form of the general equation for the Lamb momentum density is obtained 
below in Euler and Lagrange variables. Noncanonical Poisson parentheses [14] are used in the 
Euler variables. For our case it is simplest to obtain their form by the method of conversion 
from the canonical variables [i0]. In conformity with (24), the Poisson parentheses of two 

arbitrary functionals F and G of the canonical variables have the form 

{F. G } ( X . p . X . ~ ) =  6, ~, 6p 6p 6;k + 6z Op 6,  ~ dr. (25) 

We go over to the variables p, q = XVp + XV@: 

6F 6F q (~ 6F "~ 6F 6F 
6---p = -@- --  div ~ . -~ ) ,  6X 6q VP, (26) 

6 F 6 F  6F ( 6 F )  
6 - - ~ = - ~ V %  6,  ----div X-~- �9 

Substituting (26) into (24), we find the Poisson parentheses in terms of the fields p, q 

y ( 6 F  8G 6G 6 F ,  ~ Op (6F 6G 6F 6a)dV. 
{F, C i ( p , q ) = - -  qj ~q~Vm % 6q. Vm-~r ) d v  + ~ % 6p 6p % (27) 

By construction, (27) satisfies all the requirements imposed on Poisson parentheses. The ex- 

pression (27) can be taken as the definition of the Poisson parentheses in the general case 
in which q is not expressed in terms of canonical variables while the spirality of the field 
q' takes on arbitrary values. Utilizing (27), we find that the equation dp/dt = 0 and Eq. 
(i0) can be written in the noncanonical Hamiltonian form: 3p/3t = {p, H}, 3q/3t = {q, H}. 
As H is varied, it is understood that q0 is a functional of p, q such that div v = 0. 

In the particular case of p = const the Potential energy in the Hamiltonian (23) must 
be discarded and the second term in the Poisson parentheses as well. In this case the Hamil- 
tonian can be written by using the projection operator (12): 

It = (t/29) f Qij (x', x") q~ (x') qj (x") dV (x') dV (x"), (28) 

which permits taking automatic account of the condition div v = 0. 

The motion equation can be written in Hamiltonian form even in the Lagrange variables. 
Expressing the Euler coordinates x in terms of the Lagrangian a in (28), we obtain 

H = ( l /2p)  ~ Q~j Ix (a'), x (a")l~ (a')~j (a") dV (a') dV (a"), (29) 

"qi(a) = qi [x(a)] .  

We calculate the functional derivatives of the Hamiltonian (29) with respect to xi(a) and 

q i ( a )  : 
~H ~ 0"~ , " 

~ Qjm_[x (a), x (a')lqm (a') dV (a'), �9 = qj ~-x i 6x~ (a) 

6H _ 
6~i (a) - O~m [x (a), x (a') l}m (a') dV (a')., 

I t  hence  f o l l o w s  t h a t  t he  mo t ion  e q u a t i o n s  of  an i n v i s c i d  f l u i d  of  c o n s t a n t  d e n s i t y  (10) can 
be w r i t t e n  in  c a n o n i c a l  H a m i l t o n i a n  form in  Lagrange  v a r i a b l e s :  
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OxjOt = 6H/6~,  Oq~/at = --6H/6x~. (30) 

In the case p # const the density in Lagrange vaniables does not changei in time. Conse- 
quently, another calibration of the Lamb momentum density is convenient in Lagrange coordi- 
nates, in which the motion equations do not contain Euler density gradients. If we require 
that the field in (7) satisfy the condition d~/dt = p then the equation for q acquires the 
form 

dqJdt = --qjOvJOxi ~ pO(v2/2)/Ox~ -- Pgi. 

The right side of this equation equals --~H/~x. 
(23) with respect to qi yields the velocity. 
p # const. 

The functional derivative of the Hamiltonian 
Therefore, (30) remains valid even in the case 

CONCLUSION 

Let us discuss the connection between the representation (16) and the Weber transforma- 
tion of the hydrodynamics equations [ii]. As is known, the equation for the vorticity in an 
ideal homogeneous fluid can be rewritten in the form of the Cauchy equations [ii]: 

~i(t) = ~j(O)Oxi/Oay. (31) 

In an inhomogeneous fluid (13) can be written in the form (31). In some sense, Eq. (17) is 
the conjugate to Eq. (13). Hence, it should be expected that q' will evolve according to an 
equation conjugate to (31). 

Let us make the following change of variable in (17) 

q~ = b~Oai/Oxi, (32) 

where b is a new unknown vector. Substituting (32) into (17) yields db/dt = 0. Hence, by 
setting t = 0 in (32), we obtain q'(0) = b(0) = b(t) and 

t t 

qi (t) = qj (0) Oaj/Oxi, (33) 

The equality 

pv~axj/aa~ =-a~/aa~ + %ap/a~ + q~(O) ~ 

follows from (16) and (33) and can be considered as one of the forms of the generalized Weber 

transformations. 

Going over from the field v to the new variable q can be considered as the replacement 
of the hydrodynamic field calibration in which a new condition (8) is imposed instead of the 
incompressibility calibration condition. An analogous change in calibration is possible in 
magnetohydrodynamics equations (see [4]) as well as in compressible fluid hydrodynamics with 
the appropriate generalization of the scheme to search for Lagrange invariants. Lagrange 
invariants similar to those obtained above are missing in the presence of viscosity. In this 
case the equation for the Lamb momentum density is derived analogously to (9) and (I0). The 
dissipative component~Av will be in their right sides. In the case of a homogeneous fluid 

~Av = --~ curl curl v = --~ curl curl q/p. 

Proposals to use a finite-dimensional approximation of the flow by vortex rings are con- 
tained in [15-17]. To produce gridless algorithms for the computation it was here proposed 
in [16, 17] to use a system of dynamical equations for the Lamb momentums and the coordinates 
of small vortex rings which had been derived for the homogeneous fluid case in [16, 18]. Neces- 
sary for the applicability of this system is that the dimensionless parameter, the ratio of 
the vortex dimensions to the spacing between them, be small. Consequently, it does not de- 
scribe the vortex trajectories at intervening spacings on the order of their size. There is 
also a considerable arbitrariness in the selection of the vortex ring parameters, and an as- 
sociated arbitrariness in the magnitude of their self-induced velocity. 

The dynamical equation (9) can be used to construct analogous numerical algorithms for 
the computation of ideal fluid flows free of the constraints noted as well as to extend them 
to the case of an inhomogeneous fluid. That (9) is Hamiltonian in form means that the phase 
volume and other Poincar~ integral invariants are conserved in time. This property permits 
the construction of a fluid statistical mechanics and can be useful in investigating the sta- 

bility of solutions. 
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